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SUMMARY 

In this work a study of the application of the finite element method to  transonic flows in axial 
turbomachines is undertaken. 

Solution techniques capable of accurately predicting flows from the incompressible regime up to  the 
establishment of shocks in the transonic regime are presented. In the subsonic and shockless transonic 
regimes a local linearization method capable of very rapid convergence is used. In the full transonic 
regime the artificial compressibility method is employed to  exclude downstream influences in the 
supersonic regions. The two approaches can be combined in a unified package and appropriate switches 
introduced to  select the relevant method in any flow regime. 
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1. INTRODUCTION 

Modern turbomachinery cascade analyses require rapid and accurate numerical solutions, 
especially in the transonic regime. Cascade codes have traditionally followed the develop- 
ment of corresponding isolated aerofoil algorithms. Type-dependent transonic numerical 
techniques have enjoyed wide popularity in finite difference methods and have also been 
applied to the finite volume approach. 

A simpler approach, labelled the artificial (AC) compressibility method, has recently been 
proposed by Eberle.' The method consists of modifying the density at supersonic points of 
the flow, during the solution development, to introduce an artificial viscosity necessary to 
shock formation. The method is now in wide use for both finite difference and finite element 
calculations. 

2. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

For the steady, two-dimensional, inviscid, compressible flow of a fluid in a cascade, one can 
write in terms of the velocity potential 

where p ,  po and b are density, stagnation density and streamtube depth, respectively. 
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Figure 1. Cascade numerical solution domain 

Figure 1 is a sketch of the computational domain adopted. The appropriate boundary 
conditions become: 

( 2 4  

(2b) 
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on A B  -+ - = ao[M cos PIin, i s .  only the axial speed is specified 

on CD + - = ao[M cos PI,,, i.e. only the axial speed is specified. 

on AE + @(x) = aa,(x) + ao[rsM sin PIin, a periodicity condition 

on FC + @(x) = @,(x) + ao[rsM sin @Ie,, a periodicity condition 

on EF, GH f The no-penetration condition (d@,lan = 0) is enforced 

where is the potential at the corresponding x point on BG 

( 2 4  

(2e) 

where n is the outward normal direction to the blade surface at any point, r is the 
streamtube radius, s is the pitch, M the Mach number and p is the flow angle. 
Alternatively, if one selects a stream function formulation, the governing equation becomes: 

where Q2 is the potential at the corresponding x point on HD. 

The equation is usually normalized by defining: 

eL--!ev; - - = - u  a+ Pb 
ax rit a y  rit 

where rit is the streamtube mass flow rate. 

(4) 
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The boundary conditions in this case become: 

on A B  + $= y/rs 
on CD + again only the axial speed is specified, 
giving in conjunction with mass continuity 

on BG f $ = $,(x); unknown 
on H D  f $ = q!rtrZ(x); unknown 

A E  and BG are periodic boundaries along which 

on A E  f $(x) = ql(x)+ 1 
on FC f $(XI = 1Clz(x) + 1 

(5e) 
(Sf) 

on GH -+ $ = O  
on EF +- $ = l  

The governing equation (1) or its alternative form of equation (3)  are complemented by 
the isentropic relationship 

where y is the isentropic exponent. 

3. SUBSONIC SOLUTIONS 

For the subsonic regime, the governing equation is elliptic and to speed up convergence we 
adopt a local linearization scheme appropriate to finite  element^.^-^ If an initial solution can 
be determined at a low Mach number, one can assume the solution at a slightly higher Mach 
number to be a small perturbation around it. Our initial solution is normally the incompressi- 
ble one obtained by setting p = po everywhere, for equations (1) or (3). Then by determining, 
in each element, a local velocity direction 6 and a normal to it qe, say at the centroid, one 
can assume 

where 4’ is a stream function defining the perturbation velocity components 

The perturbation stream function ($’) can be shown to satisfy the Prandtl-Glauert 
equation 
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within each element. An appropriate variational integral for (9) is 

Equation (10) is then rewritten in terms of the global stream function (+) and one obtains, 
after the cancellation of the contour integral term over adjacent inner element boundaries: 

where C is the outer contour of the calculation domain and N the total number of elements 
in the domain. 

A similar procedure can be applied to equation (1) resulting in the variational integral:3 

Equation (1 la), or alternatively equation (1 lb), provides an iterative procedure that takes 
into consideration the physics of the flow. The change in the type of governing equation at 
transonic speeds shows up naturally in the integral and contributes greatly to rapid con- 
vergence at these speeds. 

4. TRANSONIC SOLUTIONS 

For the transonic regime the proper influences have to be accounted for and downstream 
influences excluded at supersonic points. While finite difference relaxation schemes are 
highly developed for this problem, finite element methods have proved difficult and cumber- 
some for transonic flows. Recently, however, Eberle’ and Hafez et d4 have developed the 
artificial compressibility method for finite elements and for finite differences, respectively. By 
replacing the density p at supersonic points by an artificial density 6 calculated at a point 
slightly upstream, an artificial viscosity is introduced into equation (I), and shock waves 
evolve naturally in the solution of transonic flows. It is not clear in Eberle’s work exactly 
where to take the artificial density 6. Hafez et al.3 scheme, however, is systematic and 
assigns at any supersonic point P the density 6 such that: 

where 

p being the coefficient of artificial compressibility and s the streamline direction. 
If, in a finite element solution, the grid is aligned approximately with the streamlines one 
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can safely adopt Hafez et al.’s approach of calculating the artificial density using the density 
gradient between the centroids of adjacent elements. 

5. FINITE ELEMENT DISCRETIZATION 

Within each element 
n 

$(x, v > =  c N(5, qM1 
L = l  

where in the present work n has been taken as 3 ,  4 or 8, i s .  for simple constant derivative 
triangular elements or isoparametric 4- and 8-node quadrilaterals. Upon minimization we 
obtain at the element level, for the stream function formulation 

R, = -..L - ds, for elements having a boundary on AB or CD, i.e. 
f p y b  

where R is the right-hand side. The explicit form of the shape functions N,(& q) can be 
found in any finite element reference (such as Reference 5) .  In the isoparametric approach 
the element edges’ geometry is described by the same approximation function as equation 
(13): 

n 

x = c Nr(5, q)x, 

Y = c N ( 5 ,  V)Y1 

(164  

(16b) 

,=I 
and 

n 

r = l  

Since dy = Y d0 we prefer to replace (16b) by 

i = l  

Since all shape functions N, are in terms of the local co-ordinates (5, q) one proceeds as 
follows: 

(17) 

or inverting the Jacobian of the transformation 
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where [J] and [.TI-' can be explicitly calculated for each element. A further transformation is 
needed to obtain the shape function derivatives with respect to the local flow direction in 
each element 

where the flow angle de) is updated during each iteration as: 

Only one Bow angle (T is calculated at the centroid for the case of triangular or quadrilateral 
elements. After substituting (19) into (14a), the influence matrix is formed for each element 
by a 3 x 3 Gaussian integration and assembled in the usual fashion to yield 

[KIW = {Rl (21) 
The variational integral is identical in the transonic case with Me = 0 in equation (14). 

Only 4-node quadrilateral elements have been used for transonic solutions. 

6. DOMAIN DISCRETIZATION 

The construction of appropriate computational grids for cascades is always a challenging 
problem. In an industrial situation where such an analysis program would be used in a 
'black-box' form, any mesh generation scheme should be fully automated. Several solution 
schemes have been presented in the literature and use different methods for the generation 
of such grids."-' Finite difference schemes usually require the mapping of the computational 
domain into a rectangular region whereas finite area schemes7 require the centring of control 
volumes, around each nodal point, across which continuity of flow variables is imposed. 

In the present work we start by splining the co-ordinates of the blade. Local splines are 
found necessary for high turning turbine blades. Leading and trailing edge circles are then 
fitted at both ends of compressor blades. Several element layers resembling the blade shape 
could be added. The remainder of the grid is generated isoparametrically between the last 
element layers (Figure 2). Upstream and downstream sections are also constructed in an 
expanding fashion. For the case of 8-node isoparametric elements, the location of the exact 

Figure 2. Finite element automatically generated grid 
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mid-points is an important factor in the solution but has received scant attention in the 
literature. On the blade, for example, one proceeds by connecting the two corner nodes of 
each element by a straight line. By constructing a normal to this line, at its mid-point, and 
finding the intersection of this normal with the spline describing the blade, one would have 
located the exact mid-point of the parabola that replaces the spline in the analysis. If the 
analysis is for triangular elements, the same grid is used and each parabolic element broken 
internally into 6 triangular elements. 

7. FT5ATURES OF THE SOLUTION 

The program tested contained the following options that could be specified interactively by 
the user: 

(a) Stream Function Solution. 
(b) Velocity Potential Solution. 
(c) Local-linearization. 
(d) Triangular, 4-node and 8-node quadrilateral elements. 
(e) Arbitrary radius and height of the axisymmetric streamtube analysed in the blade-to- 

blade plane. 
(f) Complete freedom in specification of number of points and their distribution on the 

blade, across the pitch and in the upstream/downstream sections. The inlet/exit sections are 
built in an expanding fashion and can also be slanted to match the flow angles. 

During each iteration, the matrix [ K ]  of equation (21) is assembled in the ‘Skyline’ form 
described in Reference 5. Essentially the element topology is first scanned and the band- 
width of each row predetermined. The variable bandwidth matrix [ K ]  is then stored in vector 
form, with a vector of pointers to the addresses of diagonal elements. The scheme is efficient, 
especially if element layers are generated around the blade and the bandwidth of only a few 
rows increases substantially. 

The symmetric matrix is solved by LLT decomposition using the program described in the 
previous reference. Convergence to an accuracy of 0-01 per cent in the density for subsonic 
flows occurs in about 4 to 6 iterations and global solution times are below 7 sec on a Cyber 
175 computer. 

An important comment to be added concerns the extraction of Mach numbers from the + 
or @ solution. Although for &node isoparametric elements the Mach number distribution is 
linear within an element, it is discontinuous across the elements. Hinton et al.’s method’ has 
proven innately accurate in obtaining corner values of the Mach number from the precise 
values obtainable at the Gaussian points. Large non-physical velocity peaks would usually 
result at leading and trailing edges without the use of this method. 

For the artificial compressibility method we use the locally linearized approach during 3 or 
4 iterations to provide an initial good guess to the transonic solution. Afterwards a successive 
line overrelaxation method is used to implement the AC solution. Two comments are worth 
making here. First, at each vertical line of the inlet/exit sections, a periodicity condition must 
be enforced. For the symmetric test case presented here (Figure 11), the periodicity constant 
is zero. However, to enable the use of a tridiagonal solver one can, for example, assume all 
points on A E  (Figure 1) to be known, with periodicity respected, from the previous iteration. 
Solution symmetry, however, is immediately destroyed and one needs to repeat the line 
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relaxation procedure several times at the same station to recover symmetry. The physical 
explanation is simple since such an approach is equivalent to specifying nodal values on AE 
while imposing a condition t?@/t?n = 0 on BG during the solution. If one chooses implicitly to 
account for periodicity at each line, the tridiagonal structure is destroyed. Using the skyline 
method, however, the matrix size at each line is limited and solution times are unaffected. 
The same solver is then used for subsonic and transonic solutions. 

Secondly, it i s  imperative to update the last station in the cascade since no (b values are 
specified on this line. We solve for the last station, and the line preceding it, simultaneously 
during each field sweep. This has the minor effect of increasing the matrix skyline only when 
the last station is reached. 

8. TEST CASES AND RESULTS 

Several test cases are presented here. The method's accuracy has been verified against 
analytical, experimental and other numerical data. In Figure 3 our stream function solution is 
compared to the incompressible analytical solution of Gostelow and Smith." All other cases 
presented use the velocity potential approach. 

Gostelow blade (incompressible) 

20 40 60 80 100 
Percent chord 

Figure 3.  Incompressible flow over Gostelow 
cascade using stream function formulation, 

8-node element 

In Figure 4 an impulse turbine cascade, designed by Stanitz and Sheldrake," is success- 
fully analysed and the solution compares well against the experimentally available data. 

Figures 5 and 6 compare the solutions for a flow over a compressor blade designed by 
Stanitz and Sheldrake's hodograph method," using triangular and 8-node isoparametric 
elements. The superiority of the latter element is evident. Figure 6 also shows the 8-node 
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- FEM 
0 Experiment (Stanitz) 

$, = 45" 
$ 2  =-45O 
O= 1.6313 
M = 0.497 

1 .o 

bex/bin = 0.9793 .8 

5 
a .6 
5 
g .4 

c 
c 

I 

.!2 

0 
0 10 20 30 40 50 60 70 80 90 100 

Percent chord 

Figure 4. Stanitz impulse turbine blade, potential formulation, 8-node element 

element solution to the same blade but on an arbitrary surface described by 
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Figure 5. Hodograph designed blade, potential formulation, Figure 6. Hodograph designed blade, potential formulation, 
triangular element 8-node element 
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More points are used to describe this surface in the actual solution and r and b become 
additional variables in the Gaussian integration of each element. Although no experimental 
or other numerical data are available for comparison in this case, we estimate accuracy by 
integrating the torque profile around the blade and comparing against the imposed angular 
momentum change between inlet and exit. The error is less than 0-2per cent. 

Two shockless transonic turbine blades (Figures 7 and 8) designed by HobsonI2 are also 
compared with the numerical predictions by this FEM code using the 8-node element. 
Despite not accurately predicting the peak (Figure 7), both results are in good agreement 
with the hodograph design. 

Hobson, first impulse blade a 
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3 1.0 

0.8 
5 
P 
c 

0.6 

0.4 

0.2 
20 40 60 80 100 

Hobson, second impulse blade 
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Figure 7 .  Hobson first impulse shockless tran- Figure 8. Hobson second impulse shockless tran- 
sonic blade, potential formulation, 8-node sonic blade, potential formulation, 8-node 

element element 

Figures 9 and 10 show the comparisons of flow results over a shockless transonic 
compressor blade designed by Korn7 using the subsonic %node element solver and also the 
artificial compressibility method using bilinear elements. We conclude, from our experience, 
that local linearization is twice as fast as no linearization for the same final accuracy. 

Other results have also been obtained using the artificial compressibility method and 
bilinear elements. Figure 11 demonstrates the shock capturing capability of the AC method 
for the flow over a non-staggered cascade of NACA 0012 aerofoils at M = 0.77; we note in 
these diagrams the perfect symmetry of the pressure and suction surface distributions. The 
results compare well with the transonic small disturbance results obtainable with the method 
of Jones and Di~kinson. '~ Figure 12 represents the prediction for a 6 per cent parabolic arc 
isolated aerofoil solved for in a low-solidity cascade form at M = 0-9 compared with Jones 
and Dickinson's'' results. Finally, Figures 13(a) and (b) show the calculated Mach numbers 
and contours over a staggered transonic compressor blade row. 
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Percent chord 

Figure 9. Korn shockless transonic blade, 
potential formulation, 8-node element with 

local linearization 
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Figure 1 1 .  NACA 00 12 unstaggered cascade, 
M = 0.77, potential formulation, bilinear element 

with artificial compressibility 
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Fig. 10. Korn shockless transonic blade, 
potential formulation, bilinear element 

with artificial Compressibility 
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Figure 12. 6 per cent parabolic arc unstaggered 
cascade, M = 0.90, potential formulation, bilinear 

element with artificial compressibility 
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Figure 13(a). Multiple circular arcs cascade, M = 0.90, potential formu- 
lation bilinear element with artificial compressibility 
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Figure 13(b). Mach number contours for cascade of Figure 13(a) 

9. CONCLUSIONS 

A versatile and accurate finite element method is presented for the solution of transonic 
cascades. Test cases compare favourably with theory experiments and hodograph designs in 
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both the subsonic and transonic regimes. Solution times for the subsonic cases are very short 
(7 sec), whereas those for transonic solutions with shocks are of the order of 100 to 200 sec 
on a Cyber 175 computer. 
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APPENDIX 

Nomenclature 

a 
A 
AC 
b 
C 
FEM 
1 
J 
k 
K 
M 
ni 
n 
Ni 
r 
R 

TSD 
u, v 
V 
x> Y 
P 
Y 
8 

5, 71 
Q >  71, 

S 

P 
P 
- 
0- 

dJ 
4, Q, 

speed of sound 
cross-sectional area of streamtube 
artificial compressibility 
streamtube depth 
outer contour of solution domain 
Finite element method 
variational integral 
Jacobian of the transformation 
element influence matrix 
global influence matrix 
Mach number 
streamtube mass flow rate per blade passage 
outward normal direction to the solution domain boundary 
shape function 
radius of streamtube 
right-hand side of finite element matrix equation 
pitch in radians, 2~/ (number  of blades) ; also streamline direction 
transonic small disturbance solutions 
velocity components in x and y directions, respectively 
meridional flow 
meridional distance; tangential distance 
flow angle far upstream and downstream 
isentropic exponent 
circumferential distance measured from bottom left of selected solution domain 
(Figure l ) ,  y = r8 
local normalized co-ordinates within elements 
local velocity direction in element e and its normal respectively. 
density 
artificial density 
velocity direction in an element with respect to x axis; also solidity 
stream function 
velocity potential 
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p artificial compressibility coefficient 
[ ] matrix 
{ } vector 
1 1 
Subscripts 
i 
0 stagnation property 
00 conditions far upstream 
(in) property at channel inlet 
(ex) property at channel exit 
( e )  property of element e 

transpose of a vector 

property at nodal point i 
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